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1. EMOTION AI 

A comprehensive course covering state-of-the-art AI applications such 

as Emotion AI, Creative AI, Explainable AI, Business and HealthCare AI, 

and many more. 

By Dr. Ryan Ahmed, Ph.D., MBA

SuperDataScience Team 

A. CONCEPT

Artificial Emotional Intelligence or Emotion AI is a branch of AI that 

allow computers to understand human non-verbal cues such as 

body language and facial expressions. 

Affectiva offers cutting edge emotion AI tech: 

https://www.affectiva.com/ 



C. NETWORKS PIPELINE

We pass our image through two different models, one is a key-point 

detection model and the other is an expression detection-based 

model.

Finally, we combine the output of these two models to get the final 

result.
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B. PROJECT OVERVIEW

In this case study, we will assume that you work as an AI/ML 

consultant. You have been hired by a Startup in San Diego to build, 

train and deploy a system that automatically monitors people 

emotions and expressions. 

The aim of this project is to classify people’s emotions based on their 

face images.
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Networks training is performed by optimizing the matrix of weights 

outlined below: 
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D. DEEP LEARNING AND COMPUTER VISION

Artificial neural networks are information processing models inspired 

by the human brain. Anns are built in a layered fashion where inputs 

are propagated starting from the input layer through the hidden 

layers and finally to the output.

1. ARTIFICIAL NEURAL NETWORKS CONCEPT



2. BUILD AN ANNS USING KERAS

>> model.add(Dense(1, activation='linear'))
>> model.add(Dense(25, activation='relu'))

>> from keras.layers import Dense

>> model = Sequential()

>> from keras.models import Sequential

>> from sklearn.preprocessing import MinMaxScaler 
 

>> import tensorflow.keras

>> model.add(Dense(25, input_dim=5, activation='relu'))

>> model.summary()

3. TRAIN AN ANN USING KERAS

>> model.compile(optimizer='adam', loss='mean_squared_error')
>> epochs_hist = model.fit(X_train, y_train, epochs=20, 

batch_size=25, validation_split=0.2) 

4. EVALUATE THE TRAINED ANN MODEL

>> X_Testing = np.array([[input #1, input #2, input #3,.., input 

#n]])
>> y_predict = model.predict(X_Testing) 

NEURAL NETWORK (CNN)
5. HOW TO BUILD A CONVOLUTIONAL

CNNs is a type of deep neural networks that are commonly used for 

image classification.

CNNs are formed of (1) Convolutional Layers (Kernels and feature 

detectors), (2) Activation Functions (RELU), (3) Pooling Layers (Max 

Pooling or Average Pooling), and (4) Fully Connected Layers (Multi-

layer Perceptron Network). 
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6. BUILD A CNN USING KERAS

>> from keras.models import Sequential

 

>> cnn_model.add(MaxPooling2D(2,2))

>> cnn_model.add(Dense(units = 10, activation = 'softmax'))

>> from keras.optimizers import Adam >> from keras.callbacks import 
TensorBoard 
 

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), activation = 
'relu'))

>> cnn_model.add(Dropout(0.3)) 

 

 

>> cnn_model.add(Dense(units = 512, activation = 'relu'))

>> from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, 
Dense, Flatten, Dropout

>> cnn_model = Sequential() 

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), activation = 
'relu', input_shape = (32,32,3)))

>> cnn_model.add(Flatten()) 

7. WHAT IS RESIDUAL NETWORK

Vanishing gradient problem occurs when the gradient is 

backpropagated to earlier layers which results in a very small 

gradient. 

As CNNs grow deeper, vanishing gradient tend to occur which 

negatively impact network performance.
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Resnet works by adding “identity mappings” on top of CNN.  

ImageNet contains 11 million images and 11,000 categories.

Residual Neural Network includes “skip connection” feature which 

enables training of 152 layers without vanishing gradient issues.

ImageNet is used to train ResNet deep network. 
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8. KERAS IMPLEMENTATION OF RESNET

>>def res_block(X, filter, stage)

>>X = Conv2D(f1, (1,1),strides = (1,1), kernel_initializer= 
glorot_uniform(seed = 0))(X)

>>X_copy = X >>f1 , f2, f3 = filter

>>X = MaxPool2D((2,2))(X)

>>X = Activation('relu')(X)
>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 
'same', kernel_initializer= glorot_uniform(seed = 0))(X)
>>X = BatchNormalization(axis =3,)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = Activation('relu')(X)

# Short pat
>>X_copy = Conv2D(f3, kernel_size = (1,1), strides =(1,1), 
kernel_initializer= glorot_uniform(seed = 0))(X_copy

>>X_copy = BatchNormalization(axis =3)(X_copy)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1) , 
kernel_initializer= glorot_uniform(seed = 0))(X
>>X = BatchNormalization(axis =3)(X)

# ADD
>>X = Add()([X,X_copy])
>>X = Activation('relu')(X)

>>X_copy = MaxPool2D((2,2))(X_copy)

# Identity Block 1 

# Main Path
>>X_copy = X



# Identity Block 2

# Main Path
>>X = Conv2D(f1, (1,1),strides = (1,1) kernel_initializer= 
glorot_uniform(seed = 0))(X)

>>X = Activation('relu')(X)

>>X = Activation('relu')(X)

>>X = BatchNormalization(axis =3)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = Activation('relu')(X)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1), 
kernel_initializer= glorot_uniform(seed = 0))(X)

>>X = Conv2D(f1, (1,1),strides = (1,1), kernel_initializer= 
glorot_uniform(seed = 0))(X)

>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 
'same', kernel_initializer= glorot_uniform(seed = 0))(X)
>>X = BatchNormalization(axis =3)(X)
>>X = Activation('relu')(X)

# ADD
>>X = Add()([X,X_copy]) 

>>X = BatchNormalization(axis =3)(X)

>>X_copy = X

>>X = BatchNormalization(axis =3)(X)

>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 
'same', kernel_initializer= glorot_uniform(seed = 0))(X)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1), 
kernel_initializer= glorot_uniform(seed = 0))(X)

# ADD
>>X = Add()([X,X_copy])

>>return X
>>X = Activation('relu')(X)

>>X = Activation('relu')(X)

E. TENSORFLOW SERVING

In-order to serve the trained model using TensorFlow Serving, we 

need to save the model in the format that is suitable for serving 

using TensorFlow Serving.

TensorFlow Serving is a high-performance serving system for 

machine learning models, designed for production environments. 

With the help of TensorFlow Serving, we can easily deploy new 

algorithms to make predictions. 



The model will have a version number and will be saved in a 

structured directory. 

After the model is saved, we can now use TensorFlow Serving to start 

making inference requests using a specific version of our trained 

model "servable". 

>> import tempfile # Obtain a temporary storage directory
>> MODEL_DIR = tempfile.gettempdir()

# Let's join the temp model directory with our chosen version number 

>> version = 1 # specify the model version, choose #1 for now  

>> print('export_path = {}\n'.format(export_path)) 
 
# Save the model using simple_save
>> if os.path.isdir(export_path):

!rm -r {export_path} 

 

print('\nAlready saved a model, cleaning up\n')

>> export_path = os.path.join(MODEL_DIR, str(version))

 
>> tf.saved_model.simple_save(     
keras.backend.get_session(),     

inputs={'input_image': model.input},     
export_path,     

outputs={t.name:t for t in model.outputs})

1. SAVE THE TRAINED MODEL

TO OUR LIST OF PACKAGES
2. ADD TENSORFLOW-MODEL-SERVER PACKAGE

>> !echo "deb http://storage.googleapis.com/tensorflow-serving-apt 
stable tensorflow-model-server >> tensorflow-model-server-universal" | 
tee /etc/apt/sources.list.d/tensorflow-serving.list && \ curl 
https://storage.googleapis.com/tensorflow-serving-
apt/tensorflowserving.release.pub.gpg | apt-key add -
>> !apt update 



5. START MAKING REQUESTS IN TENSORFLOW SERVING 

In-order to make prediction using TensorFlow Serving, we need to 

pass the inference requests (image data) as a JSON object. 

4. RUN TENSORFLOW SERVING

There are some important parameters:

>> !tail server.log 

>> nohup tensorflow_model_server \  

--model_base_path="${MODEL_DIR}" >server.log 2>&1 
 

--rest_api_port=8501 \  
--model_name=fashion_model \   

>> os.environ["MODEL_DIR"] = MODEL_DIR
>> %%bash --bg 

 model_name: You'll use this in the URL of REST requests. You 

can choose any name.

 rest_api_port: The port that you'll use for REST requests.

 model_base_path: This is the path to the directory where you've 

saved your model. 

REST is a revival of HTTP in which http commands have semantic 

meaning.

For more information regarding REST, check this out: 

https://www.codecademy.com/articles/what-is-rest 

3. INSTALL TENSORFLOW MODEL SERVER

>> !apt-get install tensorflow-model-server



Finally, we get the prediction from the post request made to the 

deployed model and then use argmax function to find the predicted 

class. 

Then, we use python requests library to make a post request to the 

deployed model, by passing in the JSON object containing inference 

requests (image data). 

>> predictions = json.loads(json_response.text)['predictions']

class_names[np.argmax(predictions[0])], test_labels[0], 
class_names[np.argmax(predictions[0])], test_labels[0]))

>> !pip install -q requests
>> print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))

# Let's create a JSON object and make 3 inference requests

>> import requests

>> show(0, 'The model thought this was a {} (class {}), and it was 
actually a {} (class {})'.format(  

>> headers = {"content-type": "application/json"}

>> data = json.dumps({"signature_name": "serving_default", 
"instances": test_images[0:10].tolist()})

>> json_response = 
requests.post('http://localhost:8501/v1/models/fashion_model:predict
', data=data, headers=headers)



2. BUSINESS AI 

A. CONCEPT

In this case study, we will assume that you work as a data scientist at 

a bank. 

The data consists of 25 variables.

The bank has collected extensive data about its customers such as 

demographics, historical payments record, and amount of bill dollar 

values.

B. XGBOOST

XGBoost or Extreme gradient boosting is the algorithm of choice for 

many data scientists and could be used for regression and 

classification tasks. 



D.  XGBOOST- GRADIENT BOOSTING ALGORITHM 

Gradient boost works by building a tree based on the error (residuals) 

from the previous tree.

XGBoost is a supervised learning algorithm and implements 

gradient boosted trees algorithm. 

The algorithm work by combining an ensemble of predictions from 

several weak models. 

It is robust to many data distributions and relationships and offers 

many hyperparameters to tune model performance. 

C. XGBOOST- BOOSTING 

Ensemble techniques such as bagging and boosting can offer an 

extremely powerful algorithm by combining a group of relatively 

weak/average ones. 

For example, you can combine several decision trees to create a 

powerful random forest algorithm. 

Boosting can reduce variance and overfitting and increase the 

model robustness. 

By Combining votes from a pool of experts, each will bring their own 

experience and background to solve the problem resulting in a 

better outcome. 

XGBoost is an example of ensemble learning. 



Gradient boost scales the trees and then adds the predictions from 

the new tree to the predictions from previous trees. 

>> model.fit(X_train, y_train)         

>> import xgboost as xgb
>> model = xgb.XGBClassifier(objective ='reg:squarederror', 
learning_rate = 0.1, max_depth = 5, n_estimators = 100)

>>y_pred = model.predict(X_test) 
 
>>param_grid = {'gamma': [0.5, 1, 5],'subsample': [0.6, 0.8, 1.0], 
'colsample_bytree': [0.6, 0.8, 1.0], 'max_depth': [3, 4, 5] }
>>xgb_model = XGBClassifier(learning_rate=0.01, n_estimators=100, 
objective='binary:logistic')
>>from sklearn.model_selection import GridSearchCV
>>grid = GridSearchCV(xgb_model, param_grid, refit = True,verbose=4) 
>>grid.fit(X_train, y_train) 

E. XGBOOST- IMPLEMENTATION 

F. XGBOOST IN AWS SAGEMAKER 

 One column represents the output or target label.

Gradient boosting uses tabular data for inputs/outputs: 

 Rows represent observations.
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Here’re the tree most important ones:

M4: General-purpose compute instance is recommended.

There is over 40 hyperparameters to tune Xgboost algorithm with 

AWS SageMaker.

Max_depth (0 – inf): is critical to ensure that you have the right 

balance between bias and variance. If the max_depth is set too 

small, you will underfit the training data. If you increase the 

max_depth, the model will become more complex and will 

overfit the training data. Default value is 6.

Gamma (0 – inf): Minimum loss reduction needed to add more 

partitions to the tree. 

Eta (0 – 1): step size shrinkage used in update to prevents 

overfitting and make the boosting process more conservative.  

 CSV.

Amazon SageMaker implementation of XGBoost supports the 

following file format for training and inference: 

 libsvm.

Xgboost does not support protobuf format (note: this is unique 

compared to other Amazon SageMaker algorithms, which use the 

protobuf training input format). 

XGBoost currently only trains using CPUs. 

Xgboost is memory intensive algorithm so it does not require much 

compute. 

 The rest of the columns represent the inputs (features).



3. EXPLAINABLE AI 

A. CONCEPT

Explainable AI helps answer the following key question: “why did AI 

made this predictions?”

Extensive research is being done in the area of AI explainability as it 

AI models are considered black boxes that take in input and return 

an output. 

Alpha: L1 regularization term on weights. Regularization term to 

avoid overfitting. The higher the gamma the higher the 

regularization. If gamma is set to zero, no regularization is put in 

place. 

Lambda: L2 regularization.

After each boosting step, you can directly get the weights of 

new features, and eta shrinks the feature weights.
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B. GRAD-CAM VISUALIZATION 

prediction by the model.

Gradient-Weighted Class Activation Mapping (Grad-CAM) helps 

visualize the regions of the input that contributed towards making 

It does so by using the class-specific gradient information flowing 

into the final convolutional layer of CNN to localize the important 

regions in the image that resulted in predicting that particular class. 

For example, in AI applications in healthcare, doctors must 

understand and validate that the AI is making prediction based on 

right factors rather than based on irrelevant factors or noises. 

necessary to understand why this model has made this decision. 



This would enhance the filter values that contributed towards 

making this prediction and lower the filter values that didn’t 

contribute towards the result. 

Then, we perform weighted combination of activation maps and 

follow it by a ReLU to obtain the heatmap. 

C. GRAD-CAM VISUALIZATION

To visualize the activation maps, we pass the image through the 

model to make the prediction. 

Use argmax to find the index corresponding to the maximum value 

in the prediction, which gives the predicted class. Now, we take the 

predicted value for that class by the model.

Since, we want to enhance the filter values that resulted in this 

prediction, we multiply the filter values obtained using 

tensorflow.GradientTape() with the filter values in the last 

convolutional layer. 

We are using tensorflow.GradientTape() to get the value of gradients. 

Then, calculate the gradient that is used to arrive at that value with 

k
respect to feature map activations A  of the convolution layer. 



4. HEALTHCARE AI

A. CONCEPT

Artificial Intelligence is revolutionizing Healthcare in many areas 

such as:

Maximizing Hospital Efficiency. 

Surgical Robots. 

Disease Diagnosis with medical imaging.

Deep learning has been proven to be superior in detecting diseases 

from X-rays, MRI scans and CT scans which could significantly 

improve the speed and accuracy of diagnosis. 

AI healthcare market is expected to reach $45.2 billion USD by 2026 

from the current valuation of $4.9 billion USD. 



The goal of image segmentation is to train a neural network to 

produce pixel-wise mask of the image. 

You will use ResUNet architecture to solve the current task. 

In case of Unet, we convert (encode) the image into a vector followed 

by up sampling (decode) it back again into an image.

In case of Unet, the input and output have the same size so the size 

of the image is preserved. 

B. IMAGE SEGMENTATION

The goal of image segmentation is to understand and extract 

information from images at the pixel-level.

Image Segmentation can be used for object recognition and 

localization which offers tremendous value in many applications 

such as medical imaging and self-driving cars etc. 

Our goal is to improve the speed and accuracy of detecting and 

localizing brain tumors based on MRI scans. 

This would drastically reduce the cost of cancer diagnosis and help in 

early diagnosis of tumors which would essentially be a life saver. 



Unet architecture is based on Fully Convolutional Networks and 

modified in a way that it performs well on segmentation tasks.

1. Encoder or contracting path consist of 4 blocks: 

  First block consists of 3x3 convolution layer +  Relu + 

  BatchNormalization.

Resunet consists of three parts: 

  Encoder or contracting path.

  Decoder or expansive path.  

  Bottleneck.

1. 

2. 

3.   

C. LAYERED DEEP LEARNING PIPELINE
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D. RESUNET

ResUNet architecture combines UNet backbone architecture with 

residual blocks to overcome the vanishing gradients problems 

present in deep architectures. 



E. RESUNET ARCHITECTURE

Copy

Max-pooling 2x2
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  It consist of Res-block followed by up sampling conv layer  

  2x2. 

  It is in-between the contracting and expanding path.

2. Bottleneck:

  3 blocks following bottleneck consist of Res-blocks followed    by   

3. Expanding or Decoder path consist of 4 blocks:

  Final block consist of Res-block followed by 1x1 conv layer. 

  up-sampling conv layer 2 x 2.

  Remaining three blocks consist of  Res-blocks followed by      

  Maxpooling 2x2. 



 

# Stage 2

# Stage 4

# Stage 5 (Bottle Neck)

# Input tensor shape

>>input_shape = (256,256,3) 

# Stage 1

>>X_input = Input(input_shape) 

>>conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', 
kernel_initializer ='he_normal')(conv1_in)

>>pool_3 = MaxPool2D(pool_size = (2,2))(conv3_in) 

 

>>pool_2 = MaxPool2D(pool_size = (2,2))(conv2_in) 
 

>>conv4_in = resblock(pool_3, 128)

>>conv2_in = resblock(pool_1, 32)

>>conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', 
kernel_initializer ='he_normal')(X_input)

# Stage 3
>>conv3_in = resblock(pool_2, 64)

>>pool_4 = MaxPool2D(pool_size = (2,2))(conv4_in) 

>>pool_1 = MaxPool2D(pool_size = (2,2))(conv1_in) 
>>conv1_in = BatchNormalization()(conv1_in)

>>conv1_in = BatchNormalization()(conv1_in) 

 

 

 

>>conv5_in = resblock(pool_4, 256) 

# Upscale stage 1

>>up_1 = resblock(up_1, 128) 

>>up_2 = upsample_concat(up_1, conv3_in)
>>up_2 = resblock(up_2, 64) 

 

>>up_3 = upsample_concat(up_2, conv2_in)

>>up_1 = upsample_concat(conv5_in, conv4_in)

 

# Upscale stage 2

>>up_3 = resblock(up_3, 32) 
 
# Upscale stage 4

# Upscale stage 3

>>up_4 = upsample_concat(up_3, conv1_in)
>>up_4 = resblock(up_4, 16) 

>>output = Conv2D(1, (1,1), padding = "same", activation = 
"sigmoid")(up_4) 
 

 
# Final Output 

>>model_seg = Model(inputs = X_input, outputs = output ) 

 

F. RESUNET IMPLEMENTATION



 [[ 0, 0],

  [0, 0]] 

If our output mask is as follows: 

   [0,255]] 

  [[255, 0], 

To represent this mask we have to first flatten the image into a 1-D 

array. This would result in something like [255,0,0,255] for mask. Then, 

we can use the index to create the mask. Finally we would have 

something like [1,0,0,1] as our mask. 

G. MASK

The goal of image segmentation is to understand the image at the 

pixel level. It associates each pixel with a certain class. The output 

produce by image segmentation model is called a “mask” of the 

image. 

Masks can be represented by associating pixel values with their 

coordinates. For example if we have a black image of shape (2,2), this 

can be represented as: 



5. MARKETING AI

A. CONCEPT

Marketers can help build the company’s brand, engage customers, 

grow revenue, and increase sales. 

One of the key pain points for marketers is to know their customers 

and identify their needs. 

If data about the customers is available, data science and AI/ML can 

be applied to perform market segmentation.

Marketing is crucial for the growth and sustainability of retail 

business. 

By understanding the customer, marketers can launch a targeted 

marketing campaign that is tailored for specific needs.



Age

Saving

Age

Saving

K-means

3. Assign each data point to the nearest centroid, doing so will enable 

us to create “K” number of clusters. 

1. Choose number of clusters “K”.

2. Select random K points that are going to be the centroids for each 

cluster. 

4. Calculate a new centroid for each cluster.

B. K-MEAN ALGORITHM STEPS 

B. KMEANS 

The algorithm groups observations with similar attribute values 

together by measuring the Euclidian distance between points. 

K-means is an unsupervised learning algorithm (clustering).  

K-means works by grouping some data points together (clustering) 

in an unsupervised fashion. 

A. CONCEPT 



Within cluster sum of squares (WCSS)

 distance(Pi,C₁)²

Pi in Cluster 1

= +  distance(Pi,C₂)²

Pi in Cluster 2

+  distance(Pi,C₃)²

Pi in Cluster 3

C. HOW TO CHOOSE OPTIMAL NUMBER OF K? 

Calculate the “Within Cluster Sum of Squares (WCSS)” for various 

values of K (number of clusters).

Plot the WCSS vs. K and choose the elbow of the curve as the 

optimal number of clusters to use. 

6. Go to step 4 and repeat. 

5. Reassign each data point to the new closest centroid.
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D. HOW TO IMPLEMENT K-MEANS IN SCI-KIT LEARN? 

>> k = 4  #specify the number of clusters

>> labels = kmeans.labels_ 
>> kmeans.fit(X_train)
>> kmeans = KMeans(k)



C. AUTOENCODERS INTUITION

Auto encoders use the same input data for the input and output, 

Sounds crazy right!? 

Auto encoders are a type of Artificial Neural Networks that are used 

to perform a task of data encoding (representation learning). 

Auto encoders work by adding a bottleneck in the network. 

This bottleneck forces the network to create a compressed (encoded) 

version of the original input. 

Auto encoders work well if correlations exists between input data 

(performs poorly if the all input data is independent).  

Autoencoders unsupervised

training

Target (true)

label = cat

Encoded

cat image

x x

input output

code

D. AUTOENCODER – INTUITION

>>x = Dense(50, activation = 'relu')(input_df)
>>input_df = Input(shape = (37,))

>>x = Dense(500, activation = 'relu', kernel_initializer = 
'glorot_uniform')(x)
>>x = Dense(500, activation = 'relu', kernel_initializer = 
'glorot_uniform')(x)



>>x = Dense(2000, activation = 'relu', kernel_initializer = 
'glorot_uniform')(x)

>>x = Dense(500, activation = 'relu', kernel_initializer = 
'glorot_uniform')(x)

>>autoencoder = Model(input_df, decoded) 

>>encoded = Dense(8, activation = 'relu', kernel_initializer = 
'glorot_uniform')(x)

# autoencoder

>>decoded = Dense(37, kernel_initializer = 'glorot_uniform')(x) 

>>x = Dense(2000, activation = 'relu', kernel_initializer = 
'glorot_uniform')(encoded)

 

# encoder - used for dimensionality reduction

 

 

>>encoder = Model(input_df, encoded) 

>>autoencoder.compile(optimizer = 'adam', loss='mean_squared_error')

6. CREATIVE AI



A. CONCEPT

It’s like giving humans an extremely powerful drug!

Creative AI is a new branch of Artificial intelligence in which AI can 

create paintings, write compelling stories, and compose new music. 

If a network has been trained to see animals in images, it will try to 

extract animal features in any given image. 

As the image is increasingly feed to the network, more weird features 

will start to pop up. 

The algorithm works by creating dream-like effect.

Deep dream is a computer vision algorithm developed by Alex 

Mordvintsev at Google.  

Remember when you were a kid looking at the clouds and trying to 

interpret shapes? This is a horse, here’s a dog. 

DeepDream does the same thing by boosting the patterns it sees in 

a given image based on what it has been trained to see in the past 

(during training). 

B. DEEP DREAM WORKING

If you feed an image to a CNN, the first layers generally detect 

lowlevel features such as edges. 

As you go deeper in the network, higher level features are then 

detected such as faces, trees, and cars. 



“The final few layers assemble those into complete interpretations— 

these neurons activate in response to very complex things such as 

entire buildings or trees,” Google’s engineers explain.
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C. DEEP DREAM ALGORITHM STEPS

Forward an image through a trained ANN, CNN, ResNet..etc. 

Select a layer of choice (first layers capture edges, deep layers 

capture full shapes such as faces). 

Calculate the activations (output) coming out from the layer of 

interest.

Calculate the gradient of the activations with respect to the input 

image. 

Iterate and repeat over multiple scales. 

Modify the image to increase these activations, and thus enhance 

the patterns seen by the network resulting in trippy hallucinated 

image!

African
elephants

Snakes

Lions



D. DEEP DREAM ALGORITHM IMPLEMENTATION:

>>base_model = tf.keras.applications.InceptionV3(include_top = False, 
>>weights = 'imagenet')
>>names = ['mixed3', 'mixed5']
>>layers = [base_model.get_layer(name).output for name in names] 
>>deepdream_model = tf.keras.Model(inputs=base_model.input, 
outputs=layers) >>img_1 = Image.open("/content/drive/My Drive/Colab 
Notebooks/Modern AI Portfolio Builder/Art Creation by AI/sky.jpg")
>>img_2 = Image.open('/content/drive/My Drive/Colab Notebooks/Modern 
AI Portfolio Builder/Art Creation by AI/sea.jpg')

>>      plt.imshow(deprocess(image)) 

>>  plt.imshow(deprocess(image)) 

 >>def deprocess(image):

>>      image = tf.clip_by_value(image, -1, 1)

>>      tape.watch(image) 

>>  for step in range(steps):

>> return loss, image 

>>Sample_Image = 
tf.keras.preprocessing.image.img_to_array(Sample_Image) >>dream_img = 
run_deep_dream_simple(model=deepdream_model, image=Sample_Image1, 
steps=2000, step_size=0.001)

>>      print ("Step {}, loss {}".format(step, loss)) 

>>  plt.show() 

>>      plt.figure(figsize=(12,12)) 

>>      gradients /= tf.math.reduce_std(gradients) 

>>    if step % 100 == 0: 

>>  image = 255*(image + 1.0)/2.0 

>>def deepdream(model, image, step_size):

 

>>def run_deep_dream_simple(model, image, steps=100, tep_size=0.01):
>>    image = 
tf.keras.applications.inception_v3.preprocess_input(image)

>>Sample_Image1 = tf.keras.preprocessing.image.load_img('img_0.jpg') 
>>Sample_Image1 = 
tf.keras.preprocessing.image.img_to_array(Sample_Image1) 
>>Sample_Image1.shape

>> with tf.GradientTape() as tape:

>>image = Image.blend(img_1, img_2, 0.5)  

 

>>      loss = calc_loss(image, model)
>>      gradients = tape.gradient(loss, image)

  

>>    loss, image = deepdream(model, image, step_size)     

>>      plt.show() 

>>Sample_Image1 = tf.expand_dims(Sample_Image1, axis = 0)

>>      image = image + gradients * step_size

>>activations = deepdream_model(Sample_Image1) 

>>  plt.figure(figsize=(12,12)) 

>>  return deprocess(image) 

 
>>  return tf.cast(image, tf.uint8) 



7. CONFUSION MATRIX

A. CONCEPT

Classification Accuracy = (TP+TN) / (TP + TN + FP + FN).

Precision = TP/Total TRUE Predictions = TP/ (TP+FP) (When model 

predicted TRUE class, how often did it get it right?).

Misclassification rate (Error Rate) = (FP + FN) / (TP + TN + FP + FN).

True class

Predictions

Type II error

Type I error

+

+

-

-

False -

False +True +

True -

A confusion matrix is used to describe the performance of a 

classification model: 

False negatives (FN) (Type II error): classifier predicted FALSE (patient 

do not have disease), but they actually do have the disease.

True negatives (TN): cases when model predicted FALSE (no disease), 

and correct class was FALSE (patient does not have disease). 

True positives (TP): cases when classifier predicted TRUE (has a 

disease), and correct class was TRUE (patient has disease).  

False positives (FP) (Type I error): classifier predicted TRUE, but 

correct class was FALSE (patient does not have disease).  



Recall = TP/ Actual TRUE = TP/ (TP+FN) (when the class was actually 

TRUE, how often did the classifier get it right?).

B. CONFUSION MATRIX IN SKLEARN 

>> from sklearn.metrics import   classification_report, 
confusion_matrix 

>> cm = confusion_matrix(y_test, y_predict_test)  
>> sns.heatmap(cm, annot=True) 

>> y_predict_test = classifier.predict(X_test)  

C. CLASSIFICATION REPORT 

>> from sklearn.metrics import classification_report  
>> print(classification_report(y_test, y_pred))

8. REGRESSION MACHINE LEARNING MODELS METRICS 

A. MEAN ABSOLUTE ERROR (MAE) 

Mean Absolute Error (MAE) is obtained by calculating the absolute 

difference between the model predictions and the true (actual) 

values.

MAE is a measure of the average magnitude of error generated by 

the regression model.

The mean absolute error (MAE) is calculated as follows: 



|yi - yi|

 i = 1

MAE =

n

-
1
n

If MAE is zero, this indicates that the model predictions are perfect. 

B. MEAN SQUARE ERROR (MSE)

Mean Square Error (MSE) is very similar to the Mean Absolute Error 

(MAE) but instead of using absolute values, squares of the difference 

between the model predictions and the training dataset (true values) 

is being calculated. 

MSE values are generally large compared to the MAE since the 

residuals are being squared.

  Calculate the average of all residuals 

  Calculate the residual for every data point

MAE is calculated by following these steps: 

  Calculate the absolute value (to get rid of the sign) 

1. 

2. 

3.   

In MSE, error increases in a quadratic fashion while the error 

increases in proportional fashion in MAE. 

In case of data outliers, MSE will become much larger compared to 

MAE. 

The MSE is calculated as follows: 

(yi - yi)²

 i = 1

MSE =

n

-
1
n



C. ROOT MEAN SQUARE ERROR (RMSE)

RMSE can be easily interpreted compared to MSE because RMSE 

units match the units of the output. 

Root Mean Square Error (RMSE) represents the standard deviation of 

the residuals (i.e.: differences between the model predictions and the 

true values (training data)). 

The MSE is calculated as follows: 

RMSE provides an estimate of how large the residuals are being 

dispersed.

(yi - yi)²

 i = 1

MSE =

n

-
1
n

  Calculate the squared value of the residuals 

MAE is calculated by following these steps: 

  Calculate the residual for every data point

  Calculate the average of all residuals 

1. 

2. 

3.   

  Calculate the squared value of the residuals 

  Calculate the average of the squared residuals

  Obtain the square root of the result 

  Calculate the residual for every data point 

RMSE is calculated by following these steps: 

1. 

2. 

3. 

4.  



D. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) 

MAE values can range from 0 to infinity which makes it difficult to 

interpret the result as compared to the training data. 

Mean Absolute Percentage Error (MAPE) is the equivalent to MAE 

but provides the error in a percentage form and therefore overcomes 

MAE limitations.

The MAPE is calculated as follows: 

MAPE might exhibit some limitations if the data point value is zero 

(since there is division operation involved).

|(yi - yi)/yi|

 i = 1

MAPE =

n

-
100%

n

MPE is similar to MAPE but without the absolute operation.

MPE is useful to provide an insight of how many positive errors as 

compared to negative ones.

E. MEAN PERCENTAGE ERROR (MPE)

The MPE is calculated as follows: 

(yi - yi)/yi

 i = 1

MPE =

n

-
100%

n


