
MODERN AI
PRACTICAL

1. EMOTION AI

A comprehensive course covering state-of-the-art AI applications such

as Emotion AI, Creative AI, Explainable AI, Business and HealthCare AI,

and many more.

By Dr. Ryan Ahmed, Ph.D., MBA

SuperDataScience Team

A. CONCEPT

Artificial Emotional Intelligence or Emotion AI is a branch of AI that

allow computers to understand human non-verbal cues such as

body language and facial expressions.

Affectiva offers cutting edge emotion AI tech:

https://www.affectiva.com/

C. NETWORKS PIPELINE

We pass our image through two different models, one is a key-point

detection model and the other is an expression detection-based

model.

Finally, we combine the output of these two models to get the final

result.

Emotion

class:

happiness

Input image

Combined

prediction

emotion =

happiness

1

Facial expression

(emotion) detection

model

2

Facial key points

detection model

B. PROJECT OVERVIEW

In this case study, we will assume that you work as an AI/ML

consultant. You have been hired by a Startup in San Diego to build,

train and deploy a system that automatically monitors people

emotions and expressions.

The aim of this project is to classify people’s emotions based on their

face images.

1

2

N₁-1

1 1

2 2

N₂-1

N₁=1 N₂=1 N₁=1

P₁(t)

P₂(t)

PN₁-1(t)
N -1k

ka (t)₁

ka (t)₂

k a (t)Nk

k
a (t)Nk

2b₁
2b₂

kb₁
kb₂

2bN₂-1
kbN -1k

Networks training is performed by optimizing the matrix of weights

outlined below:

W₁₁

W₂₁ W₂₂

W₁₂ W1, N₁

W2, N₁

Wm-1, N₁

Wm, N₁

Wm-1,2

Wm,2

Wm-1,1

Wm,1

D. DEEP LEARNING AND COMPUTER VISION

Artificial neural networks are information processing models inspired

by the human brain. Anns are built in a layered fashion where inputs

are propagated starting from the input layer through the hidden

layers and finally to the output.

1. ARTIFICIAL NEURAL NETWORKS CONCEPT

2. BUILD AN ANNS USING KERAS

>> model.add(Dense(1, activation='linear'))
>> model.add(Dense(25, activation='relu'))

>> from keras.layers import Dense

>> model = Sequential()

>> from keras.models import Sequential

>> from sklearn.preprocessing import MinMaxScaler

>> import tensorflow.keras

>> model.add(Dense(25, input_dim=5, activation='relu'))

>> model.summary()

3. TRAIN AN ANN USING KERAS

>> model.compile(optimizer='adam', loss='mean_squared_error')
>> epochs_hist = model.fit(X_train, y_train, epochs=20,

batch_size=25, validation_split=0.2)

4. EVALUATE THE TRAINED ANN MODEL

>> X_Testing = np.array([[input #1, input #2, input #3,.., input

#n]])
>> y_predict = model.predict(X_Testing)

NEURAL NETWORK (CNN)
5. HOW TO BUILD A CONVOLUTIONAL

CNNs is a type of deep neural networks that are commonly used for

image classification.

CNNs are formed of (1) Convolutional Layers (Kernels and feature

detectors), (2) Activation Functions (RELU), (3) Pooling Layers (Max

Pooling or Average Pooling), and (4) Fully Connected Layers (Multi-

layer Perceptron Network).

Convolution Pooling

Kernels/

Feature

detectors

Pooling

filters

Flattening

Convolutional layer
Pooling layer

(Downsampling)

Input

Hidden

Output

6. BUILD A CNN USING KERAS

>> from keras.models import Sequential

>> cnn_model.add(MaxPooling2D(2,2))

>> cnn_model.add(Dense(units = 10, activation = 'softmax'))

>> from keras.optimizers import Adam >> from keras.callbacks import
TensorBoard

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), activation =
'relu'))

>> cnn_model.add(Dropout(0.3))

>> cnn_model.add(Dense(units = 512, activation = 'relu'))

>> from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D,
Dense, Flatten, Dropout

>> cnn_model = Sequential()

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), activation =
'relu', input_shape = (32,32,3)))

>> cnn_model.add(Flatten())

7. WHAT IS RESIDUAL NETWORK

Vanishing gradient problem occurs when the gradient is

backpropagated to earlier layers which results in a very small

gradient.

As CNNs grow deeper, vanishing gradient tend to occur which

negatively impact network performance.

f(y)=y

y

f(y)

Target classes

Airplanes

Cars

Birds

Cats

Deers

Dogs

Frogs

Horses

Ships

Trucks

Resnet works by adding “identity mappings” on top of CNN.

ImageNet contains 11 million images and 11,000 categories.

Residual Neural Network includes “skip connection” feature which

enables training of 152 layers without vanishing gradient issues.

ImageNet is used to train ResNet deep network.

x

x
identity

reluF(x) + x

F(x) relu

weight layer

weight layer

8. KERAS IMPLEMENTATION OF RESNET

>>def res_block(X, filter, stage)

>>X = Conv2D(f1, (1,1),strides = (1,1), kernel_initializer=
glorot_uniform(seed = 0))(X)

>>X_copy = X >>f1 , f2, f3 = filter

>>X = MaxPool2D((2,2))(X)

>>X = Activation('relu')(X)
>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding =
'same', kernel_initializer= glorot_uniform(seed = 0))(X)
>>X = BatchNormalization(axis =3,)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = Activation('relu')(X)

Short pat
>>X_copy = Conv2D(f3, kernel_size = (1,1), strides =(1,1),
kernel_initializer= glorot_uniform(seed = 0))(X_copy

>>X_copy = BatchNormalization(axis =3)(X_copy)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1) ,
kernel_initializer= glorot_uniform(seed = 0))(X
>>X = BatchNormalization(axis =3)(X)

ADD
>>X = Add()([X,X_copy])
>>X = Activation('relu')(X)

>>X_copy = MaxPool2D((2,2))(X_copy)

Identity Block 1

Main Path
>>X_copy = X

Identity Block 2

Main Path
>>X = Conv2D(f1, (1,1),strides = (1,1) kernel_initializer=
glorot_uniform(seed = 0))(X)

>>X = Activation('relu')(X)

>>X = Activation('relu')(X)

>>X = BatchNormalization(axis =3)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = BatchNormalization(axis =3)(X)

>>X = Activation('relu')(X)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1),
kernel_initializer= glorot_uniform(seed = 0))(X)

>>X = Conv2D(f1, (1,1),strides = (1,1), kernel_initializer=
glorot_uniform(seed = 0))(X)

>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding =
'same', kernel_initializer= glorot_uniform(seed = 0))(X)
>>X = BatchNormalization(axis =3)(X)
>>X = Activation('relu')(X)

ADD
>>X = Add()([X,X_copy])

>>X = BatchNormalization(axis =3)(X)

>>X_copy = X

>>X = BatchNormalization(axis =3)(X)

>>X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding =
'same', kernel_initializer= glorot_uniform(seed = 0))(X)

>>X = Conv2D(f3, kernel_size = (1,1), strides =(1,1),
kernel_initializer= glorot_uniform(seed = 0))(X)

ADD
>>X = Add()([X,X_copy])

>>return X
>>X = Activation('relu')(X)

>>X = Activation('relu')(X)

E. TENSORFLOW SERVING

In-order to serve the trained model using TensorFlow Serving, we

need to save the model in the format that is suitable for serving

using TensorFlow Serving.

TensorFlow Serving is a high-performance serving system for

machine learning models, designed for production environments.

With the help of TensorFlow Serving, we can easily deploy new

algorithms to make predictions.

The model will have a version number and will be saved in a

structured directory.

After the model is saved, we can now use TensorFlow Serving to start

making inference requests using a specific version of our trained

model "servable".

>> import tempfile # Obtain a temporary storage directory
>> MODEL_DIR = tempfile.gettempdir()

Let's join the temp model directory with our chosen version number

>> version = 1 # specify the model version, choose #1 for now

>> print('export_path = {}\n'.format(export_path))

Save the model using simple_save
>> if os.path.isdir(export_path):

!rm -r {export_path}

print('\nAlready saved a model, cleaning up\n')

>> export_path = os.path.join(MODEL_DIR, str(version))

>> tf.saved_model.simple_save(
keras.backend.get_session(),

inputs={'input_image': model.input},
export_path,

outputs={t.name:t for t in model.outputs})

1. SAVE THE TRAINED MODEL

TO OUR LIST OF PACKAGES
2. ADD TENSORFLOW-MODEL-SERVER PACKAGE

>> !echo "deb http://storage.googleapis.com/tensorflow-serving-apt
stable tensorflow-model-server >> tensorflow-model-server-universal" |
tee /etc/apt/sources.list.d/tensorflow-serving.list && \ curl
https://storage.googleapis.com/tensorflow-serving-
apt/tensorflowserving.release.pub.gpg | apt-key add -
>> !apt update

5. START MAKING REQUESTS IN TENSORFLOW SERVING

In-order to make prediction using TensorFlow Serving, we need to

pass the inference requests (image data) as a JSON object.

4. RUN TENSORFLOW SERVING

There are some important parameters:

>> !tail server.log

>> nohup tensorflow_model_server \

--model_base_path="${MODEL_DIR}" >server.log 2>&1

--rest_api_port=8501 \
--model_name=fashion_model \

>> os.environ["MODEL_DIR"] = MODEL_DIR
>> %%bash --bg

 model_name: You'll use this in the URL of REST requests. You

can choose any name.

 rest_api_port: The port that you'll use for REST requests.

 model_base_path: This is the path to the directory where you've

saved your model.

REST is a revival of HTTP in which http commands have semantic

meaning.

For more information regarding REST, check this out:

https://www.codecademy.com/articles/what-is-rest

3. INSTALL TENSORFLOW MODEL SERVER

>> !apt-get install tensorflow-model-server

Finally, we get the prediction from the post request made to the

deployed model and then use argmax function to find the predicted

class.

Then, we use python requests library to make a post request to the

deployed model, by passing in the JSON object containing inference

requests (image data).

>> predictions = json.loads(json_response.text)['predictions']

class_names[np.argmax(predictions[0])], test_labels[0],
class_names[np.argmax(predictions[0])], test_labels[0]))

>> !pip install -q requests
>> print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))

Let's create a JSON object and make 3 inference requests

>> import requests

>> show(0, 'The model thought this was a {} (class {}), and it was
actually a {} (class {})'.format(

>> headers = {"content-type": "application/json"}

>> data = json.dumps({"signature_name": "serving_default",
"instances": test_images[0:10].tolist()})

>> json_response =
requests.post('http://localhost:8501/v1/models/fashion_model:predict
', data=data, headers=headers)

2. BUSINESS AI

A. CONCEPT

In this case study, we will assume that you work as a data scientist at

a bank.

The data consists of 25 variables.

The bank has collected extensive data about its customers such as

demographics, historical payments record, and amount of bill dollar

values.

B. XGBOOST

XGBoost or Extreme gradient boosting is the algorithm of choice for

many data scientists and could be used for regression and

classification tasks.

D. XGBOOST- GRADIENT BOOSTING ALGORITHM

Gradient boost works by building a tree based on the error (residuals)

from the previous tree.

XGBoost is a supervised learning algorithm and implements

gradient boosted trees algorithm.

The algorithm work by combining an ensemble of predictions from

several weak models.

It is robust to many data distributions and relationships and offers

many hyperparameters to tune model performance.

C. XGBOOST- BOOSTING

Ensemble techniques such as bagging and boosting can offer an

extremely powerful algorithm by combining a group of relatively

weak/average ones.

For example, you can combine several decision trees to create a

powerful random forest algorithm.

Boosting can reduce variance and overfitting and increase the

model robustness.

By Combining votes from a pool of experts, each will bring their own

experience and background to solve the problem resulting in a

better outcome.

XGBoost is an example of ensemble learning.

Gradient boost scales the trees and then adds the predictions from

the new tree to the predictions from previous trees.

>> model.fit(X_train, y_train)

>> import xgboost as xgb
>> model = xgb.XGBClassifier(objective ='reg:squarederror',
learning_rate = 0.1, max_depth = 5, n_estimators = 100)

>>y_pred = model.predict(X_test)

>>param_grid = {'gamma': [0.5, 1, 5],'subsample': [0.6, 0.8, 1.0],
'colsample_bytree': [0.6, 0.8, 1.0], 'max_depth': [3, 4, 5] }
>>xgb_model = XGBClassifier(learning_rate=0.01, n_estimators=100,
objective='binary:logistic')
>>from sklearn.model_selection import GridSearchCV
>>grid = GridSearchCV(xgb_model, param_grid, refit = True,verbose=4)
>>grid.fit(X_train, y_train)

E. XGBOOST- IMPLEMENTATION

F. XGBOOST IN AWS SAGEMAKER

 One column represents the output or target label.

Gradient boosting uses tabular data for inputs/outputs:

 Rows represent observations.

Scaling factor

Learning

rate

INITIAL

GUESS

(AVERAGE)

Y N

Y N Y N

Y N

Y N Y N

Learning

rate

Y N

Y N Y N

Learning

rate

Here’re the tree most important ones:

M4: General-purpose compute instance is recommended.

There is over 40 hyperparameters to tune Xgboost algorithm with

AWS SageMaker.

Max_depth (0 – inf): is critical to ensure that you have the right

balance between bias and variance. If the max_depth is set too

small, you will underfit the training data. If you increase the

max_depth, the model will become more complex and will

overfit the training data. Default value is 6.

Gamma (0 – inf): Minimum loss reduction needed to add more

partitions to the tree.

Eta (0 – 1): step size shrinkage used in update to prevents

overfitting and make the boosting process more conservative.

 CSV.

Amazon SageMaker implementation of XGBoost supports the

following file format for training and inference:

 libsvm.

Xgboost does not support protobuf format (note: this is unique

compared to other Amazon SageMaker algorithms, which use the

protobuf training input format).

XGBoost currently only trains using CPUs.

Xgboost is memory intensive algorithm so it does not require much

compute.

 The rest of the columns represent the inputs (features).

3. EXPLAINABLE AI

A. CONCEPT

Explainable AI helps answer the following key question: “why did AI

made this predictions?”

Extensive research is being done in the area of AI explainability as it

AI models are considered black boxes that take in input and return

an output.

Alpha: L1 regularization term on weights. Regularization term to

avoid overfitting. The higher the gamma the higher the

regularization. If gamma is set to zero, no regularization is put in

place.

Lambda: L2 regularization.

After each boosting step, you can directly get the weights of

new features, and eta shrinks the feature weights.

с k a * Ak

Bread

Dairy

Product

Dessert

Egg

Fried Food

Meat

Noodles

Rice

Seafood

Soup

Veg-Fruit

Linear combination Gradients via backprop

Global average
pooling

с с k
L = ReLU (a A)Grad-CAM k

с
a = k

j i

1

Z
- -

 сdy
k dA ij

Backprop
till conv

Rectified conv
feature maps

A

C

Relu

CNN

Y

B. GRAD-CAM VISUALIZATION

prediction by the model.

Gradient-Weighted Class Activation Mapping (Grad-CAM) helps

visualize the regions of the input that contributed towards making

It does so by using the class-specific gradient information flowing

into the final convolutional layer of CNN to localize the important

regions in the image that resulted in predicting that particular class.

For example, in AI applications in healthcare, doctors must

understand and validate that the AI is making prediction based on

right factors rather than based on irrelevant factors or noises.

necessary to understand why this model has made this decision.

This would enhance the filter values that contributed towards

making this prediction and lower the filter values that didn’t

contribute towards the result.

Then, we perform weighted combination of activation maps and

follow it by a ReLU to obtain the heatmap.

C. GRAD-CAM VISUALIZATION

To visualize the activation maps, we pass the image through the

model to make the prediction.

Use argmax to find the index corresponding to the maximum value

in the prediction, which gives the predicted class. Now, we take the

predicted value for that class by the model.

Since, we want to enhance the filter values that resulted in this

prediction, we multiply the filter values obtained using

tensorflow.GradientTape() with the filter values in the last

convolutional layer.

We are using tensorflow.GradientTape() to get the value of gradients.

Then, calculate the gradient that is used to arrive at that value with

k
respect to feature map activations A of the convolution layer.

4. HEALTHCARE AI

A. CONCEPT

Artificial Intelligence is revolutionizing Healthcare in many areas

such as:

Maximizing Hospital Efficiency.

Surgical Robots.

Disease Diagnosis with medical imaging.

Deep learning has been proven to be superior in detecting diseases

from X-rays, MRI scans and CT scans which could significantly

improve the speed and accuracy of diagnosis.

AI healthcare market is expected to reach $45.2 billion USD by 2026

from the current valuation of $4.9 billion USD.

The goal of image segmentation is to train a neural network to

produce pixel-wise mask of the image.

You will use ResUNet architecture to solve the current task.

In case of Unet, we convert (encode) the image into a vector followed

by up sampling (decode) it back again into an image.

In case of Unet, the input and output have the same size so the size

of the image is preserved.

B. IMAGE SEGMENTATION

The goal of image segmentation is to understand and extract

information from images at the pixel-level.

Image Segmentation can be used for object recognition and

localization which offers tremendous value in many applications

such as medical imaging and self-driving cars etc.

Our goal is to improve the speed and accuracy of detecting and

localizing brain tumors based on MRI scans.

This would drastically reduce the cost of cancer diagnosis and help in

early diagnosis of tumors which would essentially be a life saver.

Unet architecture is based on Fully Convolutional Networks and

modified in a way that it performs well on segmentation tasks.

1. Encoder or contracting path consist of 4 blocks:

 First block consists of 3x3 convolution layer + Relu +

 BatchNormalization.

Resunet consists of three parts:

 Encoder or contracting path.

 Decoder or expansive path.

 Bottleneck.

1.

2.

3.

C. LAYERED DEEP LEARNING PIPELINE

Input images

brain MRI scans

Tumor

detected

Resunet

segmentation

model

Detect tumor

location on the

pixel level

Tumor not

detected

Healthy patient

(wish everyone

would ge this

prediction)

“With AI and bright minds like

yours, we will eliminate disease”

End

Resnet deep

learning

classifier model

D. RESUNET

ResUNet architecture combines UNet backbone architecture with

residual blocks to overcome the vanishing gradients problems

present in deep architectures.

E. RESUNET ARCHITECTURE

Copy

Max-pooling 2x2

Crop and concat

Up-conv 2x2

Conv 1x1

Conv 3x3, BN, Relu

Res-

block

Res-

block

Res-

block

Res-

block

Res-

block

Res-

block

Res-

block

Res-

block

 It consist of Res-block followed by up sampling conv layer

 2x2.

 It is in-between the contracting and expanding path.

2. Bottleneck:

 3 blocks following bottleneck consist of Res-blocks followed by

3. Expanding or Decoder path consist of 4 blocks:

 Final block consist of Res-block followed by 1x1 conv layer.

 up-sampling conv layer 2 x 2.

 Remaining three blocks consist of Res-blocks followed by

 Maxpooling 2x2.

Stage 2

Stage 4

Stage 5 (Bottle Neck)

Input tensor shape

>>input_shape = (256,256,3)

Stage 1

>>X_input = Input(input_shape)

>>conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same',
kernel_initializer ='he_normal')(conv1_in)

>>pool_3 = MaxPool2D(pool_size = (2,2))(conv3_in)

>>pool_2 = MaxPool2D(pool_size = (2,2))(conv2_in)

>>conv4_in = resblock(pool_3, 128)

>>conv2_in = resblock(pool_1, 32)

>>conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same',
kernel_initializer ='he_normal')(X_input)

Stage 3
>>conv3_in = resblock(pool_2, 64)

>>pool_4 = MaxPool2D(pool_size = (2,2))(conv4_in)

>>pool_1 = MaxPool2D(pool_size = (2,2))(conv1_in)
>>conv1_in = BatchNormalization()(conv1_in)

>>conv1_in = BatchNormalization()(conv1_in)

>>conv5_in = resblock(pool_4, 256)

Upscale stage 1

>>up_1 = resblock(up_1, 128)

>>up_2 = upsample_concat(up_1, conv3_in)
>>up_2 = resblock(up_2, 64)

>>up_3 = upsample_concat(up_2, conv2_in)

>>up_1 = upsample_concat(conv5_in, conv4_in)

Upscale stage 2

>>up_3 = resblock(up_3, 32)

Upscale stage 4

Upscale stage 3

>>up_4 = upsample_concat(up_3, conv1_in)
>>up_4 = resblock(up_4, 16)

>>output = Conv2D(1, (1,1), padding = "same", activation =
"sigmoid")(up_4)

Final Output

>>model_seg = Model(inputs = X_input, outputs = output)

F. RESUNET IMPLEMENTATION

 [[0, 0],

 [0, 0]]

If our output mask is as follows:

 [0,255]]

 [[255, 0],

To represent this mask we have to first flatten the image into a 1-D

array. This would result in something like [255,0,0,255] for mask. Then,

we can use the index to create the mask. Finally we would have

something like [1,0,0,1] as our mask.

G. MASK

The goal of image segmentation is to understand the image at the

pixel level. It associates each pixel with a certain class. The output

produce by image segmentation model is called a “mask” of the

image.

Masks can be represented by associating pixel values with their

coordinates. For example if we have a black image of shape (2,2), this

can be represented as:

5. MARKETING AI

A. CONCEPT

Marketers can help build the company’s brand, engage customers,

grow revenue, and increase sales.

One of the key pain points for marketers is to know their customers

and identify their needs.

If data about the customers is available, data science and AI/ML can

be applied to perform market segmentation.

Marketing is crucial for the growth and sustainability of retail

business.

By understanding the customer, marketers can launch a targeted

marketing campaign that is tailored for specific needs.

Age

Saving

Age

Saving

K-means

3. Assign each data point to the nearest centroid, doing so will enable

us to create “K” number of clusters.

1. Choose number of clusters “K”.

2. Select random K points that are going to be the centroids for each

cluster.

4. Calculate a new centroid for each cluster.

B. K-MEAN ALGORITHM STEPS

B. KMEANS

The algorithm groups observations with similar attribute values

together by measuring the Euclidian distance between points.

K-means is an unsupervised learning algorithm (clustering).

K-means works by grouping some data points together (clustering)

in an unsupervised fashion.

A. CONCEPT

Within cluster sum of squares (WCSS)

 distance(Pi,C₁)²

Pi in Cluster 1

= + distance(Pi,C₂)²

Pi in Cluster 2

+ distance(Pi,C₃)²

Pi in Cluster 3

C. HOW TO CHOOSE OPTIMAL NUMBER OF K?

Calculate the “Within Cluster Sum of Squares (WCSS)” for various

values of K (number of clusters).

Plot the WCSS vs. K and choose the elbow of the curve as the

optimal number of clusters to use.

6. Go to step 4 and repeat.

5. Reassign each data point to the new closest centroid.

Age

Saving

Pi C₁

Pi

C₂

Pi

C₃

W
it

h
in

 c
lu

st
e

rs
 s

u
m

 o
f

sq
u

a
re

s
(W

C
S

S
)

Nimber of clusters “K”

Optimal “K”

D. HOW TO IMPLEMENT K-MEANS IN SCI-KIT LEARN?

>> k = 4 #specify the number of clusters

>> labels = kmeans.labels_
>> kmeans.fit(X_train)
>> kmeans = KMeans(k)

C. AUTOENCODERS INTUITION

Auto encoders use the same input data for the input and output,

Sounds crazy right!?

Auto encoders are a type of Artificial Neural Networks that are used

to perform a task of data encoding (representation learning).

Auto encoders work by adding a bottleneck in the network.

This bottleneck forces the network to create a compressed (encoded)

version of the original input.

Auto encoders work well if correlations exists between input data

(performs poorly if the all input data is independent).

Autoencoders unsupervised

training

Target (true)

label = cat

Encoded

cat image

x x

input output

code

D. AUTOENCODER – INTUITION

>>x = Dense(50, activation = 'relu')(input_df)
>>input_df = Input(shape = (37,))

>>x = Dense(500, activation = 'relu', kernel_initializer =
'glorot_uniform')(x)
>>x = Dense(500, activation = 'relu', kernel_initializer =
'glorot_uniform')(x)

>>x = Dense(2000, activation = 'relu', kernel_initializer =
'glorot_uniform')(x)

>>x = Dense(500, activation = 'relu', kernel_initializer =
'glorot_uniform')(x)

>>autoencoder = Model(input_df, decoded)

>>encoded = Dense(8, activation = 'relu', kernel_initializer =
'glorot_uniform')(x)

autoencoder

>>decoded = Dense(37, kernel_initializer = 'glorot_uniform')(x)

>>x = Dense(2000, activation = 'relu', kernel_initializer =
'glorot_uniform')(encoded)

encoder - used for dimensionality reduction

>>encoder = Model(input_df, encoded)

>>autoencoder.compile(optimizer = 'adam', loss='mean_squared_error')

6. CREATIVE AI

A. CONCEPT

It’s like giving humans an extremely powerful drug!

Creative AI is a new branch of Artificial intelligence in which AI can

create paintings, write compelling stories, and compose new music.

If a network has been trained to see animals in images, it will try to

extract animal features in any given image.

As the image is increasingly feed to the network, more weird features

will start to pop up.

The algorithm works by creating dream-like effect.

Deep dream is a computer vision algorithm developed by Alex

Mordvintsev at Google.

Remember when you were a kid looking at the clouds and trying to

interpret shapes? This is a horse, here’s a dog.

DeepDream does the same thing by boosting the patterns it sees in

a given image based on what it has been trained to see in the past

(during training).

B. DEEP DREAM WORKING

If you feed an image to a CNN, the first layers generally detect

lowlevel features such as edges.

As you go deeper in the network, higher level features are then

detected such as faces, trees, and cars.

“The final few layers assemble those into complete interpretations—

these neurons activate in response to very complex things such as

entire buildings or trees,” Google’s engineers explain.

Convolution Kernels/

Feature

detectors

Layer #1

Input

Hidden

OutputKernels/

Feature

detectors

Layer #2

Kernels/

Feature

detectors

Layer #3

Training

Data

Low level
features Convolutional layers

High level
features

Fully connected
(dense) layers

C. DEEP DREAM ALGORITHM STEPS

Forward an image through a trained ANN, CNN, ResNet..etc.

Select a layer of choice (first layers capture edges, deep layers

capture full shapes such as faces).

Calculate the activations (output) coming out from the layer of

interest.

Calculate the gradient of the activations with respect to the input

image.

Iterate and repeat over multiple scales.

Modify the image to increase these activations, and thus enhance

the patterns seen by the network resulting in trippy hallucinated

image!

African
elephants

Snakes

Lions

D. DEEP DREAM ALGORITHM IMPLEMENTATION:

>>base_model = tf.keras.applications.InceptionV3(include_top = False,
>>weights = 'imagenet')
>>names = ['mixed3', 'mixed5']
>>layers = [base_model.get_layer(name).output for name in names]
>>deepdream_model = tf.keras.Model(inputs=base_model.input,
outputs=layers) >>img_1 = Image.open("/content/drive/My Drive/Colab
Notebooks/Modern AI Portfolio Builder/Art Creation by AI/sky.jpg")
>>img_2 = Image.open('/content/drive/My Drive/Colab Notebooks/Modern
AI Portfolio Builder/Art Creation by AI/sea.jpg')

>> plt.imshow(deprocess(image))

>> plt.imshow(deprocess(image))

 >>def deprocess(image):

>> image = tf.clip_by_value(image, -1, 1)

>> tape.watch(image)

>> for step in range(steps):

>> return loss, image

>>Sample_Image =
tf.keras.preprocessing.image.img_to_array(Sample_Image) >>dream_img =
run_deep_dream_simple(model=deepdream_model, image=Sample_Image1,
steps=2000, step_size=0.001)

>> print ("Step {}, loss {}".format(step, loss))

>> plt.show()

>> plt.figure(figsize=(12,12))

>> gradients /= tf.math.reduce_std(gradients)

>> if step % 100 == 0:

>> image = 255*(image + 1.0)/2.0

>>def deepdream(model, image, step_size):

>>def run_deep_dream_simple(model, image, steps=100, tep_size=0.01):
>> image =
tf.keras.applications.inception_v3.preprocess_input(image)

>>Sample_Image1 = tf.keras.preprocessing.image.load_img('img_0.jpg')
>>Sample_Image1 =
tf.keras.preprocessing.image.img_to_array(Sample_Image1)
>>Sample_Image1.shape

>> with tf.GradientTape() as tape:

>>image = Image.blend(img_1, img_2, 0.5)

>> loss = calc_loss(image, model)
>> gradients = tape.gradient(loss, image)

>> loss, image = deepdream(model, image, step_size)

>> plt.show()

>>Sample_Image1 = tf.expand_dims(Sample_Image1, axis = 0)

>> image = image + gradients * step_size

>>activations = deepdream_model(Sample_Image1)

>> plt.figure(figsize=(12,12))

>> return deprocess(image)

>> return tf.cast(image, tf.uint8)

7. CONFUSION MATRIX

A. CONCEPT

Classification Accuracy = (TP+TN) / (TP + TN + FP + FN).

Precision = TP/Total TRUE Predictions = TP/ (TP+FP) (When model

predicted TRUE class, how often did it get it right?).

Misclassification rate (Error Rate) = (FP + FN) / (TP + TN + FP + FN).

True class

Predictions

Type II error

Type I error

+

+

-

-

False -

False +True +

True -

A confusion matrix is used to describe the performance of a

classification model:

False negatives (FN) (Type II error): classifier predicted FALSE (patient

do not have disease), but they actually do have the disease.

True negatives (TN): cases when model predicted FALSE (no disease),

and correct class was FALSE (patient does not have disease).

True positives (TP): cases when classifier predicted TRUE (has a

disease), and correct class was TRUE (patient has disease).

False positives (FP) (Type I error): classifier predicted TRUE, but

correct class was FALSE (patient does not have disease).

Recall = TP/ Actual TRUE = TP/ (TP+FN) (when the class was actually

TRUE, how often did the classifier get it right?).

B. CONFUSION MATRIX IN SKLEARN

>> from sklearn.metrics import classification_report,
confusion_matrix

>> cm = confusion_matrix(y_test, y_predict_test)
>> sns.heatmap(cm, annot=True)

>> y_predict_test = classifier.predict(X_test)

C. CLASSIFICATION REPORT

>> from sklearn.metrics import classification_report
>> print(classification_report(y_test, y_pred))

8. REGRESSION MACHINE LEARNING MODELS METRICS

A. MEAN ABSOLUTE ERROR (MAE)

Mean Absolute Error (MAE) is obtained by calculating the absolute

difference between the model predictions and the true (actual)

values.

MAE is a measure of the average magnitude of error generated by

the regression model.

The mean absolute error (MAE) is calculated as follows:

|yi - yi|

 i = 1

MAE =

n

-
1
n

If MAE is zero, this indicates that the model predictions are perfect.

B. MEAN SQUARE ERROR (MSE)

Mean Square Error (MSE) is very similar to the Mean Absolute Error

(MAE) but instead of using absolute values, squares of the difference

between the model predictions and the training dataset (true values)

is being calculated.

MSE values are generally large compared to the MAE since the

residuals are being squared.

 Calculate the average of all residuals

 Calculate the residual for every data point

MAE is calculated by following these steps:

 Calculate the absolute value (to get rid of the sign)

1.

2.

3.

In MSE, error increases in a quadratic fashion while the error

increases in proportional fashion in MAE.

In case of data outliers, MSE will become much larger compared to

MAE.

The MSE is calculated as follows:

(yi - yi)²

 i = 1

MSE =

n

-
1
n

C. ROOT MEAN SQUARE ERROR (RMSE)

RMSE can be easily interpreted compared to MSE because RMSE

units match the units of the output.

Root Mean Square Error (RMSE) represents the standard deviation of

the residuals (i.e.: differences between the model predictions and the

true values (training data)).

The MSE is calculated as follows:

RMSE provides an estimate of how large the residuals are being

dispersed.

(yi - yi)²

 i = 1

MSE =

n

-
1
n

 Calculate the squared value of the residuals

MAE is calculated by following these steps:

 Calculate the residual for every data point

 Calculate the average of all residuals

1.

2.

3.

 Calculate the squared value of the residuals

 Calculate the average of the squared residuals

 Obtain the square root of the result

 Calculate the residual for every data point

RMSE is calculated by following these steps:

1.

2.

3.

4.

D. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

MAE values can range from 0 to infinity which makes it difficult to

interpret the result as compared to the training data.

Mean Absolute Percentage Error (MAPE) is the equivalent to MAE

but provides the error in a percentage form and therefore overcomes

MAE limitations.

The MAPE is calculated as follows:

MAPE might exhibit some limitations if the data point value is zero

(since there is division operation involved).

|(yi - yi)/yi|

 i = 1

MAPE =

n

-
100%

n

MPE is similar to MAPE but without the absolute operation.

MPE is useful to provide an insight of how many positive errors as

compared to negative ones.

E. MEAN PERCENTAGE ERROR (MPE)

The MPE is calculated as follows:

(yi - yi)/yi

 i = 1

MPE =

n

-
100%

n

